- There may be more than one test that will work.
- These are guidelines, not absolute rules.
- The tests don't find the sum of the series, they just tell you if the series is convergent/divergent.
- Practice is how to get good at this.

Is $\sum a_n$ a <i>p</i> -series or a geometric series?	$\xrightarrow{\mathrm{Yes}}$	Use <i>p</i> -series result: $\sum_{n=1}^{\infty} \frac{1}{n^p} \text{ converges if } p > 1. \text{ Diverges otherwise.}$ Use geometric series result: $\sum_{n=1}^{\infty} r^{n-1} = \frac{1}{1-r} \text{ if } r < 1. \text{ Diverges otherwise.}$
Is it obvious that $\lim_{n \to \infty} a_n \neq 0$?	$\xrightarrow{\mathrm{Yes}}$	Try the Test for Divergence.
Is $\sum a_n$ like a <i>p</i> -series or geometric series, and has positive terms?	$\overset{\operatorname{Yes}}{\longrightarrow}$	Try Limit Comparison Test or Comparison Test.
Is a_n a rational function, or involves roots of polynomials?	$\overset{\operatorname{Yes}}{\longrightarrow}$	Try Limit Comparison Test or Comparison Test.
Is $\sum a_n$ an alternating series?	$\xrightarrow{\mathrm{Yes}}$	Try Alternating Series Test.
Does a_n have factorials or constants raised to the n^{th} power?	$\xrightarrow{\mathrm{Yes}}$	Try Ratio Test.
Does $a_n = (b_n)^n$?	$\xrightarrow{\operatorname{Yes}}$	Try Root Test.
Is $a_n = f(n)$ where $f(x)$ is continuous, positive, and decreasing and $\int_1^{\infty} f(x) dx$ can be easily evaluated?	$\xrightarrow{\mathrm{Yes}}$	Try Integral Test.